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Multifractal wave functions on a class of one-dimensional quasicrystals:
Exact f(a) curves and the limit of dilute quasiperiodic impurities
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We calculate the exact multifractal scaling spectrum f(a) for the center-band wave function of
an off-diagonal tight-binding Hamiltonian defined on the “precious-mean” (PM) lattices, i.e., the
class of one-dimensional quasiperiodic lattices generated recursively by (A, B) — (A"B, A). We
find that, in the limit of dilute quasiperiodic “impurities,” n — oo, the center-band wave function
approaches a Bloch state for n even, whereas for n odd a limiting “critical” state is approached.
This difference between even and odd = is explained in terms of the convergence properties of the
spectrum of the same Hamiltonian defined on periodic extensions of finite-iteration approximants to
the PM lattices. For both even and odd =, corrections to the n = oo limit go to zero like 1/1nn.
The scaling properties of generic eigenstates are discussed.

I. INTRODUCTION

In recent years, there has been considerable interest
in generalized Fibonacci lattices.!™® Studies have been
concerned primarily with the associated renormalization-
group equations, their trace maps, and trace-map invari-
ants. The precise nature of the eigenstates corresponding
to nonescaping trace-map orbits has been studied much
less.

In this paper, we study the scaling properties of the
electronic states of a tight-binding model defined on a
class of generalized Fibonacci lattices. We focus on the
class defined recursively by the inflation rule®®

(A,B) — (A"B,A) , (1)

where A™ denotes a string of n A’s. The nth member of
this class corresponds to the infinite iterate of (1) for fixed
n. For n = 1, 2, and 3, these lattices have incommensu-
rabilities which are traditionally called the golden, silver,
and bronze mean, respectively.?®5 In keeping with this
nomenclature, we call the lattices (1) “precious-mean”
(PM) lattices.®® The associated matrix renormalization
group for 2 x 2 unimodular transfer matrices has been
studied previously®™® and was found to possess a trace
map and trace-map invariant manifold. A tight-binding
model defined on the lattices (1) has a zero-Lebesgue-
measure, multifractal spectrum and the corresponding
eigenstates are “critical,” i.e., intermediate between lo-
calized and extended.! 3¢ Such wave functions have com-
plex multifractal scaling properties and can be character-
ized by the so-called f(«) curve.”®

Generally, f(a) can be computed only numerically” or
by approximate analytical methods.®%1°® However, when
an eigenstate corresponds to a cycle of the underlying
renormalization-group matrix recursion equation, it is
possible to compute f(«) ezactly as was recently demon-
strated by Fujiwara, Kohmoto, and Tokihiro® for the 6-
cycle of an off-diagonal tight-binding model defined on
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the Fibonacci lattice (n = 1). Here, we will extend
their analysis to the center-band wave functions of an
off-diagonal tight-binding model defined on the PM lat-
tices for general n.

It is interesting to consider the limit n — oco. In this
limit we may regard the PM lattices to be periodic lat-
tices containing dilute quasiperiodic impurities (the B’s).
On one hand, we might naively expect the wave functions
to become more like Bloch states as n — co. On the other
hand, for any finite n, we know that the wave functions
must always be critical. The n — oo limit turns out to
be very subtle. However, for the center-band wave func-
tions, the exact analytical solution for f(«) for general
n allows us to determine the n — oo limit unambigu-
ously and to gain some insight into the nature of the
eigenstates. We find that the n — oo limit for n even
is fundamentally different from the n — oo limit for n
odd. For n even, the center-band eigenstates do, indeed,
approach a Bloch state. For n odd, it turns out to be im-
possible for the center-band eigenstate to converge to a
Bloch state and a limiting critical state is approached in-
stead. We will link the failure of the n=0dd center-band
wave function to approach a Bloch state to the following
fact: If the Hamiltonian of interest is defined on periodic
eztensions of finite inflations of (1), then the center of
the corresponding spectrum lies in a gap for every third
inflation.

In Sec. II, we present an exact calculation of f(«)
for general n, and give its large-n asymptotic form. In
Sec. III, we explain why the n — oo limit of f(«) for
n=even is different from the n — oo limit for n=odd. We
discuss the relevance of our results to a generic eigenstate
of the spectrum. In Sec. IV, we conclude.

II. CALCULATION OF f(«a)

Our starting point is the off-diagonal tight-binding
Hamiltonian
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where j labels the sites of a PM lattice, t; = t4 or
tp depending on whether the site j is of type A or B,
and c} creates an electron at site j. We will consider fi-
nite lattices corresponding to k iterations of (1) and take
the limit & — oo. The number of A’s in the kth iter-
ate of (1) is Fy and the number of B’s is Fj_;, where
Fy = nFy_1 + Fy_o, with F; = 1 and F; = n. The in-
commensurability of the lattices is given by the precious
means 7, = limgco (Fi/Fr-1) = (n+ Vn2+ 4)/2.
The number of sites of the kth iteration PM lattice,
Ly = Fy 4 Fx_1, thus goes like T,’f for large k. We may
think of 1/, as the density of the “impurities” B, which
goes to zero like 1/n for large n.

Following Refs. 7 and 8, we now define the scaling
properties of the site wave functions ;. First, the wave
function is normalized so that Zf—_':1 [4; |> = 1. We then
define the set of scaling exponents {a;} through the re-
lation |1,bj|2 = L;*’. The quantity of interest is the dis-
tribution of the a;’s in the limit as k — oco. Let Qg (a)
denote the number of sites for which «; € (o, a+da). As
k — oo, Qi(a) scales with the number of sites, L, like
L{(O‘), so that f(a) = limpoeo[ln Qi(@)/In Lg].1t f(a)
may be found as the saddle point of the ¥ — oo limit of
the partition function

q

L; L
Ze(@) = | DIl / >olwilt] (3)

where the denominator serves to explicitly normalize the
wave function and ¢ € (—o0, +00). One thus easily finds
that f(«) is given parametrically by

f(e) = 9(q) + qa(q), a(q)=—§qg<q) , (4)
with
o(g) = lim B2 ®)

In Lk

For a Bloch state, 1; ~ 1/v/Lx , and the f(a) curve
reduces to the single point (a, f(a)) = (1,1).

The Schrodinger equation corresponding to Hamilto-
nian (2) can be written in transfer-matrix form as

Uit =Tj41,; 95 (6)
with ’

vi= () @

Eftiy1 —ti/tin
1 0

k—o0

and

Tjyj = ; (8)
for energy E. Thus, there are three types of transfer ma-
trices Taa, Tap, and Tpa corresponding to the three pos-
sibilities for (¢j4+1,¢;), i.e., (ta,t4), (t4,tB), and (tB,t4),
respectively. In order to take advantage of the inflation
symmetry (1), it is useful to have only two transfer ma-
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trices, one of type A and one of type B. A natural choice
for such transfer matrices is

Mp =Ty,
9)

My = TABTBAT:;Zl.

M4 and Mp connect the subset £; of the kth iteration
PM lattice. (We will label the sites of £y by capital-
ized letters.) The lattice £ forms itself a PM lattice, so
that under inflation the transfer matrices for £; obey the
renormalization-group recursion equation

Myy1 = My_ My, (10)

with the initial condition My = Mp and M; = M 4. M4
and Mp are unimodular [i.e., Det(M4) = Det(Mp) =
1] so that the trace-map analysis of Refs. 3-5, 12, and
13 applies. The condition for F to be an eigenvalue of
Hamiltonian (2) with open boundary conditions is that
Tr[M}y(F)] remain bounded as k — oo.

For £ = 0 and n even, Eq. (10) has the 4-cycle

MB—>MA—>UMB—>0’MA—>MB : (11)
and for £ = 0 and n odd, Eq. (10) has the 6-cycle
Mp — Ma — GR(r™ ") — —GR(r'™™)

— R ' > R(r) — Mg , (12)

with o = (—1)”/2, 7= (_1)("+1)/2,

R(r) = (f}r ’6’"), and R = (6 1(/)r>, (13)

where r =tg/ty. For E = 0, Mg and M4 are given by

Mp = (‘1) ‘(1)) (14)

and

_ [ oR(r) for n even
Ma = {&R for n odd. (15)

For the cycles (11) and (12), Tr(My) is clearly bounded
as k — oo so that £ = 0 belongs, indeed, to the spec-
trum of Hamiltonian (2). Because this spectrum is sym-
metric about £ = 0, we refer to the £ = 0 eigenstate
as the center-band wave function. Since the cycles (11)
and (12) appear to be the only cycles of the matriz
renormalization-group equation for Hamiltonian (2), and
since we will only be able to compute f(a) exactly for
such cycles, we will from now on take E = 0. (The case
of general E will be discussed at the end of this paper.)
However, E = 0 is not the only eigenvalue whose wave
function is dominated by the 4- and 6-cycles (11) and
(12). In fact, it follows from the nonlinear dynamics of
the associated trace maps, that there is an infinite hier-
archical subset of the spectrum whose scaling properties
are governed by the same cycles.®!3 These energies lie at
the centers of a hierarchy of clusters of allowed energies.
All the corresponding wave functions are characterized
by the same f(«) curve.
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We can now compute g(g) via a straightforward ex-
tension of the method of Ref. 8. For convenience, we
consider open boundary conditions with the initial con-
dition ¥y = (i) . The simple form of the transfer matrices
Mp and M4 then guarantees that ¥; has the form

(%)

7-8
for all 7, with s an integer. Consider any two neighboring
sites of £, J and J + 1. Under m inflations, J — J’ and

(J+1) — (J+1), where now J’ and (J+1)’ are no longer
neighbors but are separated by the m-fold inflation of

|

either A or B. The greatly simplifying consequence of the
fact that the renormalization-group equation has an m-
cycle (m = 4 or 6 here) is that ¥; = ¥;/,. Because of this
fact, we can compute the wave functions of Li4n, from
the wave functions of £; by using the transfer matrices
M4 and Mp to “propagate” the wave function at J’ over
the finite number of new sites to (J +1)’. The simplicity
of the form of the wave functions allows us to do this
for arbitrary J. We are thus led to a recursion equation
for a self-similar wave function. Denote by N4(s, k) and
Np(s, k) the number of sites J € £ which are connected
to the previous site (J — 1) € L by either M4 or Mp,
respectively. Then we have

Nu(s,k+m) = E[aj(s')NA(s — s k)+a}(s)Np(s — s’ k) +a (s )Na(—s— s', k) + ag(s')Np(—s — ', k)] (16)

s’

and

Np(s,k+m)=> [b5(s)Na(s — ', k) + b5 (s )Np(s — 5", k) + b3 (s )Na(—s — s', k) + b5 (s')Np(—s — &', k)].  (17)

s!

In terms of N4(s, k) and Np(s,k), the sums of the partition function, Eq. (3), become

Ly “+o00
Sl =3 [ Nato ) [ + P2 (32000 4 (B — )20 | 4 Ny, k>} (18)
j=1 a=—oo‘l

for n even, and
Ly 400
Z |¢j'zq — Z {NA(s,k) [r-zsq + 259 4 (251) p=20+)g 4 (ﬂ_;_l_) ,,2(3+1)q] + NB(s,k)r_Z"q} (19)
ji=1 $=—00

for n odd. The coefficient of N4 is not simply r~2%¢ because every M, transfers over n sites of the original PM lattice.
The recursion equations (16) and (17) are (block-) diagonal in the variables

+ o0

+ o0

na(z, k) = Z 2 °Ny(s,k) and np(z,k) = Z z”°Np(s, k). (20)
f
If we define where (a(z)| = (g(=),f(z),1,0). For completeness,
na(z, k) g(z) = 1+ n/2z), f(z) = 1+ (n — 2)x/2 for n even,
n ?1/;’ k) and g(z) = f(1/z) = 1+ (n — 1)/(2z) for n odd. How-
lv(z, k) = 7‘: (z }c) , (21) ever, the precise form of {(a(z)| is not important since it
n ?1/;: k) is clear from the form of (24) that, in the limit £ — oo,
B ’ the partition function Z(q) is dominated by the largest
then the recursion equations (16) and (17) take the form  eigenvalue, A, of the matrix A, so that we finally obtain
lv(z, k + m)) = A(z)|v(z, k)), (22) g(q) = ] [In A(r??) — ¢ In A(r?)] . (25)
mlnr,

where A is a 4 x 4 matrix of unit determinant. The sums
(18) and (19) can be written in terms of |v(z, k)) as

L;
S = (a7, b)), (23)

so that the partition function becomes
(a(r?)|A!(r29)|v(r??, k))
(a(r2) A (r2)|w(r2, k)

Zrymi(q) = (24)

It immediately follows from Eq. (4) that

a= m1111 - (ln A(r?) — % In A(r27)> (26)
and
fla) = ooy (ln A(r?9) — q—aa—q In A(rzq)) . (27)

These are basically the same formulas as those for n = 1
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in Ref. 8, except that, of course, we must compute A for
the recursion equations of PM lattices for general n.

Since only the absolute values of the site wave func-
tions enter the partition function Zx(q), we can treat the
4-cycle for n even as an effective 2-cycle and the matrix A
is readily obtained. For n=odd, however, we are forced
to deal with the full 6-cycle (12). (The simplification
that the 6-cycle reduces to an effective 3-cycle for n = 1,
which was used in Ref. 8, does not hold for odd n > 1.)
To obtain the recursion equations (16) and (17) we must,
therefore, compute the site wave functions for the sixfold
inflations of A and B for general n, which correspond
to ~ (1 + 1,)/vVn?2+4 and ~ 72(1 + 1,)/VnZ+4
sites, respectively. Also, the number of nonzero coeffi-
cients of the recursion equations grows linearly with n
for n odd, unlike in the n even case, where the num-
ber of nonzero coefficients does not depend on n. After
a considerable amount of algebra, we eventually obtain
the matrices A(z) given in the Appendix. These matrices
are of the form diag(A(z), A71(z),1,1) in their eigenbasis.
The largest eigenvalue A is of the form

A=x+Vx2-1, (28)

where

X = $Tr(A) - 1. (29)
With y = In (y/z), we obtain for n even,

Tr(A) = n? cosh? y + 4, (30)

and for n odd,

sinh y

+2n(n? 4+ 1) (M) cosh® y
sinh y

Tr(A) = [(n* + 1) cosh? y + 2n?] (M> ’ cosh?y

+2n?[2 4 3sinh®(ny)] cosh® y + 4. (31)

The corresponding f(«) curves are now obtained by sub-
stituting A into Egs. (26) and (27) with m = 2 for n even,
and with m = 6 for n odd. The resulting f(«) curves for
the first few n, and » = 2, are shown in Figs. (1) and (2)
for even and odd n, respectively. The maximum of f(a)
is the Hausdorff dimension of the support of the wave
function”!! which is equal to unity here as it should be.
The large-n asymptotic form of f(«) is given by

&= 14 = [In(cosh p) — ptanh(pg)], (32)

f(e) = 1+ T {Infeosh(pq)] — pg tanh(pq)}  (33)

for n even, and by

2 1 cosh? p
“= 3 + 3lnn [In (2 sinhp) + p[coth(pg) — 2 tanh(pq)]

+npl — coth(ﬂm)]] ; (34)
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FIG. 1. f(a) vs a for the first few even n and 7 = 2. In

the limit » — oo, the curves asymptotically collapse to the
point (1,1).

3lnn sinh(pq)
+pg[coth(pg) — 2 tanh(pq)]

—npq coth(npq)] ; (35)

fla) = % + L |:ln (coshz(pq)-silb—(lz—eg)-)

for n odd, where p = |Inr|. In particular, the end points

of the f(a) curve, (amina f(amin)) and (amaxa f(amax));
and the value of « for which f(a) = 1, e, (corresponding

......... T - ey
10
—_—
3
Yt 05
0 i
0
X
FIG. 2. f(a) vs a for the first few odd » and r = 2.

In the limit » — oo, the left and right end points of the
curves asymptotically approach the points (%, %) and (oo, %),
respectively.
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to a value of ¢ of 400, —o0, and 0, respectively) are
asymptotically given by

1
Qmin,max — 1+ Hl?'l: [ln(cosh p) F p] y (36)
oo =14 In(cosh p)’ 37
Inn
In2
f(amm) =1- In—;z-’ (38)
f(amax) = f(amin) (39)
for n even, and by
2 1 cosh? p
Gmin = 3 + 3lnn [ln (2sinhp) - p] ’ (40)
_ 2np
Qmax = Slnn’ (41)
__ne
%= 3nn’ (42)
2 In2
f(amin) = 3 (1 - E_n) , (43)
f(amax) = f(amin) (44)
for n odd.

III. DISCUSSION

From Egs. (36)—(44) it is apparent that there is a fun-
damental difference between n even and n odd in the limit
n — oo. The f(a) curves for n even shrink to the limit
point (o, f(«)) = (1,1) and, therefore, the E = 0 eigen-
states approach a Bloch state. The f(«) curves for n odd
do not shrink to the point (1,1); instead (min, f(@min))
approaches the limit point (2, £) and (@max, f(@max)) ap-
proaches (oo, %) Thus, for n odd, the E = 0 eigenstate
approaches a limiting critical state and not a Bloch state.
Note also that convergence to the limit points is exceed-
ingly slow in both cases, with corrections to the n = oo
limit going to zero like 1/Inn.14

The reason why Bloch states are approached for n even
and not for n odd may be understood as follows. Recall
that we are taking the limit & — oo first and then the
limit n — oo. Thus, as n — oo, the PM lattices re-
duce not simply to a periodic lattice of all A’s but to a
PM lattice containing all inflations of A. If the £ = 0
eigenstate is to be a Bloch state, it must be a Bloch
state for every kth inflation of A, A, with &k > kg for
some finite kg. In the n — oo limit, A; becomes a
periodic lattice of n — oo unit cells, corresponding to
n Ag—_1’s, plus a single Bi_;. We are thus led to con-
sider periodic approximations (PA’s) to the PM lattices,
where the kth PA is defined as the periodic lattice which
has the kth iterate of the inflation rule (1) as its unit
cell. The transfer matrix which takes us across the unit
cell of the kth PA is M. For the kth PA to have an
E = 0 eigenstate (which will automatically be a Bloch
state), it no longer suffices for Tr(M3) to be bounded,
but we must have |Tr(M;)| < 2. Therefore, it follows
that the £ = 0 eigenstate can be a Bloch state of the
n — oo PM lattice if and only if |Tr(My)| < 2 for all
k > ko — 1. For the 4-cycle (11) of n=even PM lattices,
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Tr(M}) = 0 for every k and Bloch states are approached
as k — oco. However, for the 6-cycles (12) of n=odd PM
lattices, Tr(My) = 0 only if kmod3 # 1. If kmod3 =1,
then |Tr(Mp)| = 2cosh(lnr) > 2 for » # 1. In other
words, for n odd, F = 0 lies in a gap of the spectrum of
the periodic extension of A for every third k. Thus, in
the n — oo limit for n odd, it is not possible to sustain
Bloch states over the entire PM lattice and the system
must settle for a limiting critical state.

It is fair to ask how typical the large-n asymptotic be-
havior of the f(a) curves obtained here is for a generic
part of the spectrum whose scaling properties are not
governed by the matrix cycles (11) and (12). The argu-
ment given above for the difference between n even and n
odd is general. We conjecture that the eigenstates corre-
sponding to an energy E will converge in the n — oo limit
to Bloch states only if [TY[My(E)]| < 2 for all k > ko and
arbitrarily large n. This is clearly a very stringent condi-
tion which will generally be satisfied only for very special
states. Numerically, we typically find the following be-
havior for finite £ and n. If E lies in an allowed energy
band of the kth PA, then whether or not E is also an
allowed energy for the preceding PA’s, labeled by k¥’ < k,
is typically a random function of k’.!5> Furthermore, the
corresponding approximant fi(«) to f(«) typically has
fr(emax) = 0, where fi(a) is defined through Eq. (4)
but with g(g) replaced with gx(q) = In Zx(q)/In Li (no
k — oo limit). These findings support the statement
that the 4-cycle eigenstates for n even are very special
and that we can expect a typical state to approach a
limiting critical state with f(amax) = 0, and not a Bloch
state, as n — oo.

IV. CONCLUSION

In conclusion, we have calculated the exact f(a) curves
for the states of PM lattices dominated by the 4-cycle
(11) for n even, and by the 6-cycle (12) for n odd, for
general n. For n even, these states approach a Bloch
state in the limit n — oco. The 6-cycle states for n odd
cannot approach a Bloch state as n — oo and converge to
a limiting critical state instead. In both cases corrections
to the n — oo limit go to zero like 1/In n. Numerical cal-
culations suggest that the 4-cycle eigenstates for n even
are very special and that Bloch states are typically not
approached as n — oo.

Viewed differently, we have shown that dilute, n=even
quasiperiodic impurities of PM type have a weak effect
in forcing the E = 0 eigenstate of a periodic lattice of
all A’s into a critical state. Dilute, n=odd quasiperiodic
impurities of PM type have a strong effect which persists
in the limit of zero impurity density.
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APPENDIX

For n even, the matrix A(z) of the recursion equation (22) is given by

Alz) =

B (+3)+1 Gesn () ()

ONC
()
(%)

n
2
n
2

and for n odd, by

Az) =

where
Faco= (2

+n?

Pal(x)

1
t=

1
z
1
z

z[Pa1(1/2z) — 1]

(%)2(1+2)+1

HPa(@) =11 Pu(1/2)

P(,l(:li)
Pyo(1/z)
4 (z+1)3

z(z —1)2
(z+1)

(vo"-v=") '+ (3) %25

(83— 2z +3z%)z™" + 42! + 2% — 10z + 1]

Pbg(r)

Pbl(l/x)

(3)-
(3)=

Pas(l')
;1; a3()

Pb3(:L‘)

:L‘[Pbs(l/x) - 1]

2

z(z —

5) ()

1 0

1
z 23(z)
1
Fpag(x)

~[Pa(x) - 1]

Pb3(1/.’L')

(2" =227 +1)

G 1
1 n , )
1

* Toa(z — 1)

Pas(z) = = (”” + 1) [n3 (””—“) (ﬁ" - \/aE‘")2 + (302 4+ 1)(2" — :c_")]

8 \z—-1 z—1
T
8(z — 1)

(14 2)?z7™ — (1 - 5z — 5z? + 23)z" + 8z(1 — bz + 22?)],

[(B—2z +3z?) (2" + 2™") + 2(1 — z)? — 8z],

(1-27")+ (2(—"3}12) (1 +z)?z "2

_(n*+1\ (1+2)
P“(x)—( 16 )x2(x—1)
n? (z+1)

—_— 7 _ 2\, —n 2 _
8.’!22(1—-.’8)[(3 2z + 3z%)z™" + 2> — 6z + 1],

S

(A1)

(A2)

(A3)

(A4)

(A5)

Pya(a) = (1"”_n) (”+ 1) [n%(1 + 2)? + 8n2z — 22 + 62 — 1] + (Ltf—n) [Pz +1)2—22+6z—1], (A6)

16 z-—1 8

Py3(z) = % ( n3 ((“;t__ll))z 1=z +n?(14+2)(1 4327 ")

+ [(3——2m+31'2)z""+:c2—6:L-+1]+(1+x)x_“+7—:c>.

-2

(A7)

For n odd, the matrix elements of A obey some identities which are useful in the calculation of the largest eigenvalue.

In writing (A2) we have already made use of the fact that

2Pas(1/2) = 3 Pua(2).

(A8)
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In addition, we find that

TH(A) = [Pas(60 + Pas(1/)] [Pra(x) + Pra(1/50] = Paa() (Pus() + S5Poa(1/6) + $Pua) + Pua(1/]) . (A9)
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